打印本文 关闭窗口 | |
逻辑代数的化简算法来源于瑞达科技网 | |
作者:佚名 文章来源:网络 点击数 更新时间:2011/1/18 文章录入:瑞达 责任编辑:瑞达科技 | |
|
|
逻辑代数的化简算法 观察函数 1.该函数有四个逻辑变量,可表示成 Y=f(A、B、C、D) 2.该函数有三个乘积项:第一项有四个因子——四个变量在乘积项中都出现了。第二项有三个因子——缺少变量B(或)。第三项缺少变量C、D(或、)。 3.第一个乘积项是A、B、C、D的一个最小项,其余二项均不是A、B、C、D的最小项。 最小项:n个逻辑变量A1、A2、…… An组成的逻辑系统中含n个因子的乘积项——每个变量(或)在乘积项中只出现一次,称这样的乘积项为最小项。 两个逻辑变量A、B有22=4个最小项,分别是:、、、。 三个逻辑变量A、B、C有23=8个最小项,分别是:、、、、、、、。 四个逻辑变量A、B、C、D有24=16个最小项。 练习:写出A、B、C、D的十六个最小项。 最小项的性质: (1)对变量的任意一组取值,只有一个最小项为1,其余最小项全为0。二变量A、B的最小项为:、、、。对A、B的任意一组取值: A=0 B=0 =1 其余三项全为0,即===0 A=0 B=1 = 1 其余三项全为0 A=1 B=0 = 1 其余三项全为0 A=1 B=1 = 1 其余三项全为0 (2)全体最小项之和为1。(读者自己证明) (3)任意两个最小项的乘积为0。 最小项的编号: 三变量A、B、C的八组取值000、001、……111能分别使八个最小项的值为1,又与十进制数0,1……7的二进制数表示相同。用0~7编号八个最小项,记为:m0、m1、m2、m3、m4、m5、m6、m7,则m7=m111=,……m4=m100=,m0=m000=。 练习:读者试写出四变量A、B、C、D的十六个最小项m0、m1……m15。 逻辑函数的最小项之和形式 任何逻辑函数都可化为最小项之和的标准形式 例:将下列函数化为最小项之和的形式
反函数的最小项之和表示 例:求二变量A,B的逻辑函数的反函数。 解一: 解二:列真值表
由真值表写出的逻辑表达式
(全体最小项之和) 如三变量A,B,C的逻辑函数则必有 结论:在n个变量的逻辑系统中,如果Y为i个最小项之和,则必为余下的(n-i)个最小项之和。 异或运算与同或运算 定义: 称A与B异或,为异或运算符 A与B同或,为同或运算符 显然: 异或与同或互为反函数 由此推得: 即两者相等为0,不相等为1 同或运算则与之相反,且有 同学自己证明并牢记。 例1. 将下列函数化为最简与或式。
最小项的相邻性 任何两个最小项如果他们只有一个因子不同,其余因子都相同,则称这两个最小项为相邻最小项。 显然,m0与m1具有相邻性,而与不相邻,因为他们有两个因子不相同。m3与m4也不相邻,而m3与m2相邻。 相邻的两个最小项之和可以合并成一项,并消去一个变量。如: 卡诺图 卡诺图是美国工程师卡诺(Karnaugh)发明的。用小方块(格)来表示最小项。三变量的卡诺图画八个小方块(格)来表示八个最小项,四变量的卡诺图画十六个小方块来表示十六个最小项。…… 观察三变量卡诺图发现这八个小方块(最小项)中,凡几何上相邻的两个小方块(最小项)具有相邻性――只有一个变量不同,相加后能合并成一项,并能消去一个变量。 m0m1 ,m1m3 ,m3m2 ,m4m5 ,m5m7 ,m7m6 , m0m4 ,m1m5 ,m3m7 ,m2m6都具有相邻性,还有m0m2 ,m1m6也具有相邻性(可理解成将卡诺图卷成圆筒,他们在几何上就相邻了)。 在四变量卡诺图中,m0m8 ,m1m9 ,m3m11 ,m2m6也都具有相邻性。 思考题:为什么卡诺图按00,01,11,10的顺序,而非00,01,10,11顺序画小方块(代表最小项)? 逻辑函数的卡诺图表示及化简 在逻辑函数的最小项表示一节中,已经讲过,任何一个逻辑函数都可以化为最小项之和的标准形式。 只要将标准形式里函数所包含的每一个最小项,在卡诺图中对应的小方块里添上1,卡诺图上其余的小方块里添0(以后添0,以空格代替)――这就是逻辑函数的卡诺图。 其实将函数化为最小项之和,再画卡诺图的过程可以简化,函数化为最小项之和的过程可以省略,直接画出卡诺图。 例1. 画出的卡诺图并化简 解:1、画出Y的卡诺图 Y共有四个乘积项,第一个乘积项包含第4行的四项:m8,m9,m11,m10;第二个乘积项包含第1,2行(A=0)与第3,4列(C=1)相交的四项:m3,m2,m7,m6 ;第三个乘积项包含第2,3行(B=1)与第3,4列(C=1)相交的四项:m7,m6,m15,m14;第四个乘积项表第2列的4项。
2、合并与化简 从Y的卡诺图上看到第2,3列8项合并,第3,4列8项合并,第4行合并得: 例2. 解:1、画出Y的卡诺图 第1项,显然第4行中的4个最小项都含因子,而第1,2列的8个最小项都含因子,第4列与第1,2列相交的两项m8,m9即为。第4项C则包含第3,4两列的8项。 2、合并化简。从卡诺图可知
用卡诺图化简逻辑函数小结: 1. 画出逻辑函数的卡诺图。 2. 若两个最小项相邻, 则可合并为一项,且消去一个因子。 3. 若四个最小项相邻(排列成一个矩形组),则该四个最小项可合并成一项,且可消去两个因子。 4. 若八个最小项相邻(排列成一个矩形组),则该八个最小项可合并成一项,且可消去三个因子。 5. 若十六个最小项相邻(排列成一个矩形组),则该十六个最小项可合并成一项,且可消去四个因子。 无关项在逻辑函数化简中的应用 我们来分析一个实际问题: 某水库设有三个水位检测点,装有A、B、C三个干湿传感 器,当传感器被水浸泡时输出1,否则(不浸水时)输出0。该水库有大小两个闸门GL、GS。A为警戒水位点,B比警戒水位A高1米,C比警戒水位高2米。防汛部规定当水位低于警戒水位A时,关闸蓄水。当水位超过A时,开小闸门GS放水,当水位超过B时,开启大闸门GL(关闭小闸门)泄洪;当水位超过C时,大小闸门GLGS同时开启泄洪。如果用1表示闸门关闭,闸门与水库水位之间的逻辑关系真值表如下:
说明:水位低于警戒线,关闸蓄水 水位超警戒线,只开小闸门放水 只开大闸门泄洪 大小闸门同时泄洪 从前面讲过的内容来看GL=AB,这两个逻辑函数已经不能再化简了,但从现实角度看应该有更简化的结果GL=B,因为只要水位超过B(B=1),大闸门就要开启,与是否超过C无关(因为C=1时,B也等于1),同样。 这就是说明前面讲过的内容还有欠缺的地方。 我们观察上面的真值表发现,A、B、C三个代表水位的逻辑变量,可能的取值只有000、100、110和111四种。其余四种取值001、010、011和101永远不可能出现。因为没有物理意义。如果001,C=1,A=B=0这是不可能的。 自己证A、B、C永远不可能取001、010、011和101。与之对应的四个最小项就永远为0。m1=0,m2=2,m3=0,m5=0或。 初等函数有定义域Y=,不允许X取(-1,3)之间的数,逻辑函数也有类似的问题。上面讲的水位检测问题A、B、C的取值只有000、100、110、111四种情况,001、010、011和101无意义,永远不可能出现,与之对应的四个最小项将永远为0,即。这就是下面要讲的无关项问题。 无关项 由于逻辑变量的取值受到限制(约束),使得某些最小项(及其和)永远等于0,那些恒等于0的最小项就是无关项。 在卡诺图中无关项用x表示。如对化简逻辑函数有用,对组成更大的相邻矩形组有用,可将他们吸收进去(因为他们为0,等于在逻辑函数中添加0)反之弃之。 例:将下列函数化为最简与或函数式。 给定约束条件 AB+CD=0 约束条件 解:
|
|
打印本文 关闭窗口 |