打印本文 关闭窗口 | |||
电源瞬时波动对微机的影响及防护来源于瑞达科技网 | |||
作者:佚名 文章来源:网络 点击数 更新时间:2011/1/25 文章录入:瑞达 责任编辑:瑞达科技 | |||
|
|||
1 电源瞬时波动形成的原因及其对微机系统的影响 1.1 电源瞬时波动形成的原因 电源瞬时波动主要是指电网电压的瞬时下跌和瞬时停电。瞬时下跌是指电网电压幅值因某种原因在某一瞬间突然降低;瞬时停电是指电网电压在某一瞬问突然完全为零。 电网电压瞬时波动的原因很多。例如,当电网遭到雷击或雷电感应时,可造成不小于0.1 s的瞬时停电,绝大多数情况可达0.3 s以上。电力输送线方面的事故也是产生电网电压瞬时波动的一个主要原因,90%的电力线事故会导致电网有5~8个周期的瞬时停电[1]。工业现场的大功率设备启动运行时形成相当大的冲击电流,该电流是正常工作电流的10~40倍,他 1.2 电源瞬时波动对微机系统的影响 电网电压的瞬时波动可直接导致系统内部电源电压的瞬时下跌,对微机系统的工作造成严重干扰,主要表现在以下几个方面[3]: 使数据采集误差加大;引入虚假状态信号,使控制状态失灵;破坏RAM存储器的数据;改变PC值,使程序运行失常。 2 对电源瞬时波动干扰的防护 2.1采用快速交流稳压器 采用快速交流稳压器可输出稳定的220 V交流电,从而消除电网电压瞬时波动对微机系统工作的影响。 2.2 采用不间断电源UPS 不间断电源UPS能够在电源停电或下跌时,由内部逆变电源给微机供电,他能有效地防止电网的瞬时停电或电网电压的瞬时跌落。在要求较高的微机系统中,UPS是必不可少的设备。 2.3 加大系统内部整流电路的平滑电容和采用后备电源 增大整流电路的平滑电容,在一定程度上可消除电网电压瞬时波动的影响。当平滑电容为470μF时,可承受O.5个周期20%下跌幅度的瞬时波动;当电容为4 700μF时,可抵抗6.5个周期100%下跌幅度的瞬时波动。 对持续时间较长的波动,只靠增大电容是不行的,这时应考虑用辅助电源。采用浮动充电方式的辅助电源的配置如图1所示。正常工作时,整流电路输出的脉动直流电源经R给电池E充电;当瞬时波动发生时,电池经二极管给系统供电,大大提高了系统抗电源波动干扰的能力。不仅如此,由于电池相当于一个性能良好的旁路电容,他对10 kHz~1 MHz频率成份的噪声衰减有显著效果。 由于交流稳压器和UPS的造价高,配置麻烦,要求不高的微机系统一般不采用上述措施,而是利用系统本身功能,采取预先检测手段,在瞬时波动还没有影响到系统工作时,使其迅速回到开机时的初始状态。 一般微机系统都有一个开机自动复位电路,他利用一个RC充电电路,使复位电平的建立迟于电源的建立,从而避免开机时CPU的工作混乱。 当电源瞬时停电时,+5 V供电因停电而很快下降,电容C通过VD放电。自动复位电路及瞬时停电时电容C的电压波形如图2所示[4]。当电容C上的电压下降到低于4.75 V后,由于仍高于复位阈值电压,并不能使CPU复位,这时RAM中数据将遭到破坏。因此,只依靠简单的RC复位电路不能解决电源瞬时波动所带来的问题。 更完善的措施是,不仅保护RAM内容,而且还进行人栈操作,然后再让CPU停止工作。当电源恢复时,再从堆栈中取出数据,使程序继续进行下去,而不是重新开始。图4是某微机处理电源瞬时停电的各种信号时序图。电源瞬时停电时,停电信号PD为低,触发单稳电路产生一个负脉冲送至CPU的NMI端,CPU响应中断,自动产生RST指令,把PC中下一条要执行指令的16位地址送入堆栈保存,同时在NMI变低后6 ms产生禁止存储器工作的MS信号。当电源恢复后80 ms,MS信号变高,最后复位信号变高,系统再次启动。该方案还可以忽略电源恢复后100 ms内电源的再次波动。 3 结 语 实践表明,上述抑制电源瞬时波动的措施非常有效,特别是在不用交流稳压器和UPS的情况下,只利用系统本身功能消除电源波动干扰的方法得到了广泛应用,大大提高了微机系统的抗干扰能力。 |
|||
打印本文 关闭窗口 |