您现在的位置: 华玉生活网 >> 技术文库 >> 电源 >> 正文>> 繁体中文

基于单片机的半导体激光器电源控制系统的设计

Design of Electric Power Control System by Single Chip for Semiconductor Laser
Abstract: A diode laser output power system controlled by microprocessor C8051F is presented.The work current of diode laser controlled by stable current source and light power feedback.This constant current source uses a high power Darlington transistor as the current control device,the value and range of the output current which can be adjusted are very large.The constant current source has protective and slow start function and so on.
Key words: semiconductor laser diode; constant current source; slow-start circuit; C8051F single chip;
摘 要:介绍了一种以c8051f高速单片机为核心的半导体激光器驱动电源的控制系统。半导体激光器的工作电流是通过恒流源及光功率反馈控制的,其中恒流源采用达林顿管作为调整管,他可调整大范围的输出电流,可为半导体激光器提供稳定、连续的电流,并且具有慢启动和保护电路等功能。
关键词:半导体激光器;恒流源;慢启动;c8051f单片机

半导体激光器(LD)体积小,重量轻,转换效率高,省电,并且可以直接调制。基于他的多种优点,现已在科研、工业、军事、医疗等领域得到了日益广泛的应用,同时其驱动电源的问题也更加受到人们的重视。使用单片机对激光器驱动电源的程序化控制,不仅能够有效地实现上述功能,而且可提高整机的自动化程度。同时为激光器驱动电源性能的提高和扩展提供了有利条件。

1总体结构框图

本系统原理如图1所示,主要实现电流源驱动及保护、光功率反馈控制、恒温控制、错误报警及键盘显示等功能,整个系统由单片机控制。本系统中选用了C8051F单片机。C8051F单片机是完全集成的混合信号系统级芯片(SOC),他在一个芯片内集成了构成一个单片机数据采集或控制系统所需要的几乎所有模拟和数字外设及其他功能部件,如本系统中用到的ADC和DAC。这些外设部件的高度集成为设计小体积、低功耗、高可靠性、高性能的单片机应用系统提供了方便,也大大降低了系统的成本。光功率及温度采样模拟信号经放大后由单片机内部A/D转换为数字信号,进行运算处理,反馈控制信号经内部D/A转换后再分别送往激光器电流源电路和温控电路,形成光功率和温度的闭环控制。光功率设定从键盘输入,并由LED数码管显示激光功率和电流等数据。

2半导体激光器电源控制系统设计

目前,凡是高精密的恒流源,大多数都使用了集成运算放大器。其基本原理是通过负反作用,使加到比较放大器两个输入端的电压相等,从而保持输出电流恒定。并且影响恒流源输出电流稳定性的因素可归纳为两部分:一是构成恒流源的内部因素,包括:基准电压、采样电阻、放大器增益(包括调整环节)、零点漂移和噪声电压;二是恒流源所处的外部因素,包括:输入电源电压、负载电阻和环境温度的变化。

2.1慢启动电路

半导体激光器往往会因为接在同一电网上的多种电器的突然开启或者关闭而受到损坏,这主要是由于开关的闭合和开启的瞬间会产生一个很大的冲击电流,就是该电流致使半导体激光器损坏,介于这种情况,必须加以克服。因此,驱动电源的输入应该设计成慢启动电路,以防损坏,如图2所示:左边输入端接稳压后的直流电压,右边为输出端。整个电路的结构可看作是在射级输出器上添加了两个Ⅱ型滤波网络,分别由L1,C1,C2和L2,C6,C7组成。电容C5构成的C型滤波网络及一个时间延迟网络。慢启动输入电压V在开关和闭合的瞬间产生大量的高频成分,经过图中的两个Ⅱ型网络滤出大部分的高频分量,直流以及低频分量则可以顺利地经过。到达电阻R和C组成的时间延迟网络,C2和C4并联是为了减少电解电容对高频分量的电感效应。

2.2恒流源电路的设计

为了使半导体激光器稳定工作,对流过激光器的电流要求非常严格,供电电路必须是低噪声的稳定恒流源驱动,具体电路如图3所示。

如图3所示,该恒流源由运放U1和三极管T1,达林顿管Q2进行电流放大,再通过U2放大反馈,从而实现恒流输出。TQ2以大功率达林顿管为调整管,将其接成射极输出的形式,半导体激光器(LD)作为负载串联在达林顿管的发射极,通过控制达林顿管的基极实现对激光器电流的控制。本设计要求电路最大能输出3 A工作电流,这就要求推动达林顿管的基极电流也比较大,但因集成运算放大器一般工作在小电流状态,不能直接推动达林顿管正常工作,即使勉强推动其工作也会造成集成运算放大器本身功耗过大,温升过高,影响电路的输出精度,所以采用小功率三极管T1推动大功率达林顿管工作。采样电阻接在激光器下端,采样信号经过由U2组成的同相比例放大环节放大后再接回到U1的反相输入端,构成电流负反馈电路,达到输出恒流的目的。

2.3激光功率的稳定控制

光功率反馈采用外部监测光电二极管的输出光电流,由放大器再经A/D转换后送CPU处理,得出控制量,调整激光器的工作电流,从而进行激光功率的闭环控制。

温度控制在本系统中采用了半导体制冷来实现,这是一种热电制冷器,只要控制流过温控器电流的大小和方向,就能对激光器进行制冷或加热,从而控制激光器的工作温度。

2.4保护电路

虽然慢启动电路消除了高频冲击电流的危害,但不能有效地防止直流或低频电流过载对半导体激光器的危害,因此,应当设立过载保护电路。一般可采用限流式保护电路。若长时间工作于短路的情况下,过热仍然会导致调整管的损坏,此时可以采取截流式保护电路。过电压保护的精度主要取决于稳压二极管,而其工作点是随流经稳压管的电流和环境温度变化的,因此,设计上必须选用稳定电压的温漂非常小的稳压管。 3软件设计

本系统软件采用模块化的结构设计,自顶向下,逐步细化,利用子程序构成各模块,如初始化模块、键盘模块、显示模块等。主程序流程图如图4所示。

在主程序流程中,系统上电复位后,开始进行各模块初始化,然后调显示子程序,显示数据,再调键扫描子程序,若有键按下,则调相应的键功能程序,若无键按下,则循环调用显示程序。

4结 语

本文中设计的半导体激光器驱动电源的控制系统通过慢启动电路、恒流源电路和光功率反馈电路等,解决了恒流和在工作温度范围内输出功率的不稳定问题,稳定度较高。

参考文献
1. 陈凯良.竺树声 恒流源及其应用电路 1992()
2. 潘琢金.施国君 C8051Fxxx高速SOC单片机原理及应用 2002()

作者通信地址:长春工业大学 电气与电子工程学院 吉林 长春 130012


  • 扩展阅读
  • 上一个文章:
  • 【返回网站首页】 【返回电源】
  • 下一个文章:
  • 【字体: 】【】【发表评论】【加入收藏】【告诉好友】【打印此文
    文章 软件 电影 商品

    相关文章

    网友评论:(只显示最新10条。评论内容只代表网友观点,与本站立场无关!)

    | 服务声明 | 充值中心| 华安五金电器 | 收费标准| 论坛| 留言| 实用查询| 会员中心| 下载帮助| 设为首页|

    技术支持:瑞达科技 即时交谈QQ:237013889 QQ群:13810759 E-Mail:237013889@qq.com
    非盈利网站,如有侵权,请来信来电告知,第一时间处理,谢谢!
    桂ICP备17008104号 华玉生活网网站统计
    tj