在传统的高频变压器设计中,由于磁心材料的限制,其工作频率较低,一般在20kHz左右。随着电源技术的不断发展,电源系统的小型化,高频化和高功率比已成为一个永恒的研究方向和发展趋势。因此,研究使用频率更高的电源变压器是降低电源系统体积,提高电源输出功率比的关键因素。本文根据超微晶合金的优异电磁性能,通过示例介绍30kHz超微晶高频开关电源变压器的设计。
1变压器的性能指标
电路形式:半桥式开关电源变换器原理见图1:
工作频率f:30kHz
变换器输入电压Ui:DC300V
变换器输出电压U0:DC2100V
变换器输出电流Io:0.08A
整流电路:桥式整流
占空比D:1%~90%
输出效率η:≥80%
耐压:DC12kV
温升:+50℃
工作环境条件:-55℃~+85℃
2变压器磁心的选择与工作点确定
从变压器的性能指标要求可知,传统的薄带硅钢、铁氧体材料已很难满足变压器在频率、使用环境方面的设计要求。磁心的材料只有从坡莫合金、钴基非晶态合金和超微晶合金三种材料中来考虑,但坡莫合金、钴基非晶态价格高,约为超微晶合金的数倍,而饱和磁感应强度Bs却为超微晶合金2/3左右,且加工工艺复杂。因此,综合三种材料的性能比较(表1),选择饱和磁感应强度Bs高,温度稳定性好,价格低廉,加工方便的超微晶合金有利于变压器技术指标的实现。
图1(1)钴基非晶态合金和超微晶合金的主要磁性能比较
从变压器的性能指标要求可知,传统的薄带硅钢、铁氧体材料已很难满足变压器在频率、使用环境方面的设计要求。磁心的材料只有从坡莫合金、钴基非晶态合金和超微晶合金三种材料中来考虑,但坡莫合金、钴基非晶态价格高,约为超微晶合金的数倍,而饱和磁感应强度Bs却为超微晶合金2/3左右,且加工工艺复杂。因此,综合三种材料的性能比较(表1),选择饱和磁感应强度Bs高,温度稳定性好,价格低廉,加工方便的超微晶合金有利于变压器技术指标的实现。
图1(1)钴基非晶态合金和超微晶合金的主要磁性能比较
材料 | 饱和磁感应强度/T | 矫顽力/A·m-1 | 居里温度/℃ | 比损耗20kHz0.5T/W·kg-1 | 工作频率/kHz | 工作温度/℃ |
超微晶合金 | 1.2 | 0.48~1.2 | 25 | ~150 | ~150 | |
钴基非晶态 | 0.8 | 1.2 | 340 | 20 | ~100 | ~120 |
坡莫合金 | 0.7 | 1.99 | 480 | 30 | ~50 | ~200 |
磁心工作点的选择往往从磁心的材料,变压器的工作状态,工作频率,输出功率,绝缘耐压等因素来考虑。超微晶合金的饱和磁感应强度Bs较高约为1.2T,在双极性开关电源变压器的设计中,磁心的最大工作磁感应强度Bm一般可取到0.6~0.7T,经特别处理的磁心,Bm可达到0.9T。在本设计中,由于工作频率、绝缘耐压、使用环境的原因,把最大工作磁感应强度Bm定在0.6T,而磁心结构则定为不切口的矩形磁心。这种结构的磁心与环形磁心相比具有线圈绕制方便、分布参数影响小、磁心窗口利用率高、散热性好、系统绝缘可靠、但电磁兼容性较差。
3变压器主要参数的计算
3.1变压器的计算功率
半桥式变换器的输出电路为桥式整流时,其开关电源变压器的计算功率为:
Pt=UoIo(1+1/η)(1)
将Uo=2100V,Io=0.08A,η=80%代入式(1),可得Pt=378W。
3.2变压器的设计输出能力
变压器的设计输出能力为:
Ap=(Pt·104/4BmfKWKJ)1.16(2)
式中:工作频率f为30kHz,工作磁感应强度Bm取0.6T,磁心的窗口占空系数KW取0.2,矩形磁心的电流密度(温升为50℃时)KJ取468。经计算,变压器的设计输出能力AP=0.511cm4。
半桥式变换器的输出电路为桥式整流时,其开关电源变压器的计算功率为:
Pt=UoIo(1+1/η)(1)
将Uo=2100V,Io=0.08A,η=80%代入式(1),可得Pt=378W。
3.2变压器的设计输出能力
变压器的设计输出能力为:
Ap=(Pt·104/4BmfKWKJ)1.16(2)
式中:工作频率f为30kHz,工作磁感应强度Bm取0.6T,磁心的窗口占空系数KW取0.2,矩形磁心的电流密度(温升为50℃时)KJ取468。经计算,变压器的设计输出能力AP=0.511cm4。
3.3变压器的实际输出能力
变压器的输出能力即磁心的输出能力,它取决于磁心面积的乘积(AP),其值等于磁心有效截面积(AC)和它的窗口截面积(Am)的乘积,即:AP=ACAm(3)
在变压器的设计中,变压器的输出能力必须大于它的设计输出能力。在设计中,我们选用的矩形磁心的尺寸为:10×10×39×13.4(即:a=10mm,b=10mm,c=13.4mm,h=39mm),实际AP达3.66cm4(其中磁心截面积的占空系数KC取0.7),大于变压器的设计输出能力0.511cm4,因此,该磁心能够满足设计使用要求。
变压器的输出能力即磁心的输出能力,它取决于磁心面积的乘积(AP),其值等于磁心有效截面积(AC)和它的窗口截面积(Am)的乘积,即:AP=ACAm(3)
在变压器的设计中,变压器的输出能力必须大于它的设计输出能力。在设计中,我们选用的矩形磁心的尺寸为:10×10×39×13.4(即:a=10mm,b=10mm,c=13.4mm,h=39mm),实际AP达3.66cm4(其中磁心截面积的占空系数KC取0.7),大于变压器的设计输出能力0.511cm4,因此,该磁心能够满足设计使用要求。
3.4绕组计算
初级匝数:D取50%,Ton=D/f=0.5/(30×103)=16.67μs,
忽略开关管压降,Up1=Ui/2=150V。
N1=Up1Ton10-2/2BmAc=(150×16.67)10-2
/(2×0.6×1×1×0.7)=29.77匝
取N1=30匝
次级匝数:忽略整流管压降,Up2=Uo=2100V。
N2=Up2N1/Up1=(30×2100)/150=420匝
初级匝数:D取50%,Ton=D/f=0.5/(30×103)=16.67μs,
忽略开关管压降,Up1=Ui/2=150V。
N1=Up1Ton10-2/2BmAc=(150×16.67)10-2
/(2×0.6×1×1×0.7)=29.77匝
取N1=30匝
次级匝数:忽略整流管压降,Up2=Uo=2100V。
N2=Up2N1/Up1=(30×2100)/150=420匝
3.5导线线径
Ip1=Up2Ip2/Up1=0.08×2100/150=1.12A
电流密度:J=KjAp-0.1410-2=468×0.511-0.14
×10-2=5.14A/mm2
考虑到线包损耗与温升,把电流密度定为4A/mm2
Ip1=Up2Ip2/Up1=0.08×2100/150=1.12A
电流密度:J=KjAp-0.1410-2=468×0.511-0.14
×10-2=5.14A/mm2
考虑到线包损耗与温升,把电流密度定为4A/mm2
(1)初级绕组:
计算导线截面积为Sm1=Ip1/J=1.12/4=0.28mm2
初级绕组的线径可选d=0.63mm,其截面积为0.312mm2的圆铜线。
计算导线截面积为Sm1=Ip1/J=1.12/4=0.28mm2
初级绕组的线径可选d=0.63mm,其截面积为0.312mm2的圆铜线。
(2)次级绕组:
计算导线截面积为Sm2=Ip2/J=0.08/4=0.02mm2。
次级绕组的线径可选d=0.16mm的圆铜线,其截面积为0.02mm2。为了方便线圈绕制也可选用线径较粗的导线。
计算导线截面积为Sm2=Ip2/J=0.08/4=0.02mm2。
次级绕组的线径可选d=0.16mm的圆铜线,其截面积为0.02mm2。为了方便线圈绕制也可选用线径较粗的导线。
4线圈绕制与绝缘
为减小分布参数的影响,初级采用双腿并绕连接的结构,次级采用分段绕制,串联相接的方式,降低绕组间的电压差,提高变压器的可靠性,绕制后的线圈厚度约为4.5mm。小于磁心窗口宽度13.4mm的一半。在变压器的绝缘方面,线圈绝缘选用抗电强度高、介质损耗低的复合纤维绝缘纸,提高初、次级之间的绝缘强度和抗电晕能力。变压器绝缘则采用整体灌注的方法来保证变压器的绝缘使用要求。
为减小分布参数的影响,初级采用双腿并绕连接的结构,次级采用分段绕制,串联相接的方式,降低绕组间的电压差,提高变压器的可靠性,绕制后的线圈厚度约为4.5mm。小于磁心窗口宽度13.4mm的一半。在变压器的绝缘方面,线圈绝缘选用抗电强度高、介质损耗低的复合纤维绝缘纸,提高初、次级之间的绝缘强度和抗电晕能力。变压器绝缘则采用整体灌注的方法来保证变压器的绝缘使用要求。
5结束语
该超微晶开关电源变压器,环氧灌注绝缘后通过了产品的电性能检测和机载条件的环境试验,已用于机载设备,变压器的温升<35℃,工作效率达到90%以上,且波形质量优异,电性能参数稳定。超微晶合金薄带是新型的软磁合金,电磁性能优异,价格低廉,环境适应能力强,在高频电磁元件领域具有广阔的应用前景,特别是在阵面雷达系统中的电源、激励变压器、电感等。在100kHz的使用条件下,可以取代铁氧体、坡莫合金用作磁心材料。
该超微晶开关电源变压器,环氧灌注绝缘后通过了产品的电性能检测和机载条件的环境试验,已用于机载设备,变压器的温升<35℃,工作效率达到90%以上,且波形质量优异,电性能参数稳定。超微晶合金薄带是新型的软磁合金,电磁性能优异,价格低廉,环境适应能力强,在高频电磁元件领域具有广阔的应用前景,特别是在阵面雷达系统中的电源、激励变压器、电感等。在100kHz的使用条件下,可以取代铁氧体、坡莫合金用作磁心材料。
参考文献
1电子变压器专委会,电子变压器手册,沈阳:辽宁科技出版社,1998.10。
1电子变压器专委会,电子变压器手册,沈阳:辽宁科技出版社,1998.10。
2中华人民共和国电子工业部,开关电源变压器计算方法,SJ/Z2921—88北京,1998。